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Exact results for a fully asymmetric exclusion process with sequential dynamics
and open boundaries

Jordan Brankov,* Nina Pesheva, and Nikola Valkov
Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 4, 1113 Sofia, Bulgaria

~Received 2 June 1999; revised manuscript received 13 October 1999!

An exact and rigorous calculation of the current and density profile in the steady state of the one-dimensional
fully asymmetric simple-exclusion process with open boundaries and forward-ordered sequential dynamics is
presented. The method is based on a matrix product representation of the steady-state probability distribution.
The main idea is to choose a suitable representation in which the scalar products describing the current and
local density profile for a chain of arbitrary finite size depend only on the elements in a finite number of rows
and columns. This makes possible the use of a truncated finite-dimensional representation of the matrices and
vectors involved. After performing the calculations, we lift the truncation by letting its dimensionality go to
infinity. In this limit the results become exact for any size of the chain. By rescaling one of the infinite-
dimensional matrix representations found in the work of Derridaet al. @J. Phys. A26, 1493~1993!# for their
algebra, we obtain a symmetric ‘‘propagator’’ matrix. Its truncated version is diagonalized by orthogonal
transformation for easy calculation of the relevant scalar products. An interpretation of the phase transitions
between the different phases is given in terms of eigenvalue splitting from a bounded quasicontinuous spec-
trum. A precise description of the local density profiles is given for all values of the parameters. It is shown
that the leading-order asymptotic form of the position-dependent terms in the local density changes within the
low- and high-density phases, signaling the presence of a higher-order transition.

PACS number~s!: 05.60.2k, 02.50.Ey, 05.70.Ln, 64.60.Ht
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I. INTRODUCTION

We consider the current and density profile in the ste
state of a one-dimensional fully asymmetric simp
exclusion process~FASEP! on a chain ofL sites, with open
boundaries and forward-ordered sequential dynamics. E
site can be empty or occupied by exactly one particle.
each time step a particle is injected with probabilitya at the
left end (i 51). Then each pair of nearest-neighbor sites
updated sequentially from the left to the right. A partic
hops with probabilityp one site to the right, provided tha
site is empty. Finally, a particle is removed with probabil
b at the right end (i 5L). Note that the dynamics unde
consideration can transport a particle by many sites to
right during one update of the chain. Lett iP$0,1%, i
51,2, . . . ,L, be the random occupation variable of sitei in a
given time step:t i51 if the site is occupied by a particle
and t i50 if it is empty. Let P→(t1 ,t2 , . . . ,tL) be the
steady-state probability of finding the chain in configurati
$t1 ,t2 , . . . ,tL%.

In the case of random-sequential dynamics, a mat
product representation of the steady-state probability dis
bution has been found by Derrida, Evans, Hakim, and P
quier ~DEHP! @1#. Their representation involves two squa
matrices,D and E, infinite dimensional in the general cas
which satisfy a quadratic algebra, called DEHP algeb
Krebs and Sandow@2# proved that the stationary state of an
one-dimensional system with random-sequential dynam
involving nearest-neighbor hoppings and single-site bou
ary terms can always be written in a matrix-product rep
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sentation. When each lattice site can be in either ofm states,
the general matrix-product representation is based onm
matrices which obey a quadratic algebra. In contrast,
more special case of the DHEP algebra uses onlym genera-
tors. Fock representations of the general quadratic alge
have been studied by Essler and Rittenberg@3#, who have
found explicit representations in terms of infinite
dimensional tridiagonal matrices.

We follow here all the steps, except the last one, of
mapping of the algebra for the ordered-sequential upd
onto the DEHP algebra, suggested by Rajewski, Sch
schneider, and Schreckenberg@4#. Then, starting from one o
the infinite-dimensional matrix representations for the so
tion of the DEHP algebra given in@1#, namely,D3 andE3,
we obtain the corresponding tridiagonal matricesD̃3 andẼ3
that solve the bulk algebra for the ordered-sequential upd
and satisfy the boundary conditions. The propagator ma
C̃35D̃31Ẽ3 has a special property which makes possible
transformation to a symmetric form by a simple renormaliz
tion of the basis vectors.

To be more specific, let us consider an auxiliary infinit
dimensional vector spaceS and its dual spaceS †. We are
looking for two matrices,D andE, acting on the vectors o
S, and two vectors,uV&PS and ^WuPS †, such that the
steady-state probabilityP→(t1 ,t2 , . . . ,tL) is given by the
scalar product

P→~t1 ,t2 , . . . ,tL!5ZL
21K WU)

i 51

L

@t iD1~12t i !E#UVL .

~1.1!

Here ZL is a normalization constant. It is convenient
2300 ©2000 The American Physical Society
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choose the following column vectors as a basis in the c
figuration space$0,1% of the i th site

ut i50&5S 1

0D , ut i51&5S 0

1D , ~1.2!

and define a column vectorA with the matricesE andD as
components,

A5S E

D D 5Eu0&1Du1&. ~1.3!

By using the orthonormal basis of vectorsut1 ,t2 , . . . ,tL&
5ut1& ^ ut2& ^ •••u ^ utL& in the configuration space$0,1% ^ L,
one can define a stationary state vector

uP&→5ZL
21^^WuA^ LuV&& ~1.4!

such that

^t1 ,t2 , . . . ,tLuP&→5P→~t1 ,t2 , . . . ,tL!. ~1.5!

Here the vectorŝt1 ,t2 , . . . ,tLu form an orthonormal basis
in the space dual to the configuration space, i.e.,^t8ut&
5dt8,t . The direct product̂ in Eq. ~1.4! is taken over the
one-site configuration spaces, spanned by the vectors~1.2!.
Therefore, the matrixA^ L is considered as a 2L component
column vector in the configuration space, each componen
which represents a usual matrix product ofL cofactorsE
and/orD. The symbol^^Wu•••uV&& denotes the vector ob
tained by applying the scalar product^Wu•••uV& to each
component ofA^ L. The normalization constantZL in Eq.
~1.4! can be written as

ZL5^WuCLuV&, C[E1D. ~1.6!

The master equation for the stationary stateuP&→ now
takes the form,uP&→5T→uP&→ , where the transfer matrix
T→ has the following structure:

T→5RTL21,L•••T2,3T1,2L . ~1.7!

Here the matricesL andR describe the boundary condition
They are nondiagonal only in the one-site subspace of c
figurations of the first, respectively the last, site of the cha

L5L^ 1^ •••^ 1^ 1,

R51^ 1^ •••^ 1^ R. ~1.8!

By 1 we have denoted the 232 unit matrix. In the one-site
basis~1.2! the boundary conditions are represented by
matrices

L5S 12a 0

a 1D , R5S 1 b

0 12b D . ~1.9!

The matricesT i ,i 11 , i 51,2, . . . ,L21, describe the particle
hopping between the pair of nearest-neighbor sites (i ,i 11);
hence they are nondiagonal only in the corresponding t
site configuration space:

T i ,i 1151^ •••^ 1^ Ti ,i 11^ 1^ •••^ 1. ~1.10!
-

of

n-
,

e

-

In the basis formed by column vectors of the ty
ut i ,t i 11&5ut i& ^ ut i 11&, see Eq.~1.2!, the matrixTi ,i 11 has
the explicit representation

Ti ,i 115S 1 0 0 0

0 1 p 0

0 0 12p 0

0 0 0 1

D , ~1.11!

wherep is the hopping probability.
Matrix-product representation of the stationary state

the asymmetric simple-exclusion process~ASEP! with open
boundaries and sequential~as well as sublattice-parallel! up-
date has been constructed in@4#, see also@5#, on the basis of
the canceling mechanism. The general importance of the
ter for one-dimensional stochastic processes with near
neighbor interaction has been recognized in@6#. According
to the canceling mechanism, the first~in our case the left!
boundary interaction produces a defect,^WuLA5^WuÂ, Â

5Êu0&1D̂u1&, which is transported through the system
the sequential action of the particle-hopping matric
Ti ,i 11(Â^ A)5A^ Â, until it reaches the opposite bounda
where it disappears due to the boundary interaction,RÂuV&
5AuV&. Explicitly this leads to the following set of equa
tions:

@E,Ê#5@D,D̂#50,

ÊD1pD̂E5ED̂,

~12p!D̂E5DÊ,

~12a!^WuE5^WuÊ, ~1.12!

^Wu~aE1D !5^WuD̂,

~12b!D̂uV&5DuV&,

~Ê1bD̂ !uV&5EuV&

for the four unknown matricesE, Ê, D, andD̂, and the two
unknown vectors,̂ Wu and uV&. Rajewsky, Schadschneide
and Schreckenberg@4# have suggested a reduction of th
number of unknown matrices by setting

Ê5E1lI , D̂5D2lI , ~1.13!

whereI is the identity matrix andl is some real number. We
choosel521 and reduce the set~1.12! to one equation for
the bulk algebra,

pDE5D1~12p!E, ~1.14!

and two equations for the boundary conditions,

^WuE5a21^Wu,

DuV&5~b2121!uV&. ~1.15!
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By taking into account thatĈ5C, whereĈ5Ê1D̂, stan-
dard arguments lead to expressions for the stationary cu
JL and particle densityrL( i ) at sitei,

JL5ZL21 /ZL ,

rL~ i !5ZL
21^WuCi 21DCL2 i uV&, ~1.16!

which have the same form as in the case of the DEHP a
bra @1#. HereZL is defined by Eq.~1.6!.

A crucial point of our further consideration is the exi
tence of a nontrivial infinite-dimensional solution of Eq
~1.14! and ~1.15! under the choice of the vectors

uV&5S 1

0

0

A
D , ^Wu5uV&T5~1,0,0, . . . !. ~1.17!

Consider the infinite orthonormal basis$ue18&,ue28&, . . . % in
the vector spaceS, whereuek8& are column vectors with co
ordinatesuek8&n5dk,n , k,n51,2, . . . . Let usstart with the
matricesD3 and E3 given by Eq. ~36! in @1#, which are
chosen to satisfy the standard DHEP algebraD3E35D3
1E3, and the boundary conditionsD3uV&5b21uV&, ^WuE3
5a21^Wu. By suitable rescaling of the operators,D85@(1
2p)/p#D3 , E85(1/p)E3, and redefinition of the paramete
a, b that enter intoD3 andE3,

a→ a

p
, b→ b~12p!

~12b!p
,

we obtain the matrices

E85
1

p S 11jd 0 0 0 . . .

A12jh 1 0 0 . . .

0 1 1 0 . . .

0 0 1 1 . . .

. . . . . . . . . . . . . . .

D
~1.18!

and

D85
d2

p S 11hd21 A12jh 0 0 . . .

0 1 1 0 . . .

0 0 1 1 . . .

0 0 0 1 . . .

. . . . . . . . . . . . . . .

D ,

~1.19!

where

d5A12p, j5
p2a

ad
, h5

p2b

bd
. ~1.20!

Obviously, E8 and D8 satisfy the bulk algebra~1.14! and
boundary conditions~1.15!.
nt

e-

The main idea of our method is to choose a suitable r
resentation which renders a symmetric matrix for the ope
tor C5E1D. Since the elements of the upper diagonal
D8 are d2 times the elements of the lower diagonal inE8,
this can be achieved by renormalization of the basis vect
Indeed, in the new orthonormal basis$ue1&,ue2&, . . . %, de-
fined by

uek&5d12kuek8&, ^eku5dk21^ek8u, k51,2, . . . ,
~1.21!

the diagonal elements of any tridiagonal matrixA remain
unchanged, while its nonzero off-diagonal elements cha
according to

^ekuAuek11&5d21^ek8uAuek118 &,

^ek11uAuek&5d^ek118 uAuek8&. ~1.22!

ThusE8 andD8 are transformed to

E5
d

p S d211j 0 0 0 . . .

A12jh d21 0 0 . . .

0 1 d21 0 . . .

0 0 1 d21 . . .

. . . . . . . . . . . . . . .

D
~1.23!

and

D5
d

p S d1h A12jh 0 0 . . .

0 d 1 0 . . .

0 0 d 1 . . .

0 0 0 d . . .

. . . . . . . . . . . . . . .

D .

~1.24!

Hence, the lattice ‘‘translation operator’’C @7# is represented
by the symmetric infinite-dimensional matrix

C[E1D5
d

p S a1j1h A12jh 0 0 . . .

A12jh a 1 0 . . .

0 1 a 1 . . .

0 0 1 a . . .

. . . . . . . . . . . . . . .

D ,

~1.25!

where

a5d1d215
22p

A12p
. ~1.26!

Now it is obvious that due to the choice of the vectorsuV&
and^Wu the quantities of interestJL andrL( i ), see Eqs.~1.6!
and~1.16!, depend on the elements of the matricesD andC
only in the first@L/2#11 rows and columns (@x# denotes the
entire part ofx>0). Therefore, for any finiteL and a suffi-
ciently large integerM , M>@L/2#11, we can use a trun
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catedM-dimensional representation of the matrices and v
tors involved ~distinguished by the subscriptM ). After
performing the calculations, we lift the truncation by lettin
its dimensionality go to infinity. In the limitM→` the re-
sults become exact for any size of the chain. Since the ma
CM is ~real or complex! symmetric, and, as it will be show
below, with real nondegenerate spectrum, it can be diago
ized by a similarity transformation with an orthogonal mat
ib
f

t

nd
-

ix

l-

UM . This makes possible the explicit calculation of the r
evant scalar products.

II. SPECTRAL PROPERTIES OF THE TRUNCATED
PROPAGATOR

Let CM be theM3M matrix obtained by truncation o
Eq. ~1.25! up to theM th row and column:
CM~j,h!5
d

pS a1j1h A12jh 0 0 . . . . . .

A12jh a 1 0 . . . . . .

0 1 a 1 . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . a 1

. . . . . . . . . . . . 1 a

D ~2.1!
e

e

line
. A
eld

us,

rix

he
and letuVM& and^WMu be theM-component column and row
vectors obtained by truncation of the vectors~1.17!, respec-
tively.

The eigenvalue problem for the symmetric matrix~2.1!
can be solved by using a method similar to the one descr
in @8#. Let lM(k), k51, . . . ,M , be the eigenvalues o
CM(j,h). For pÞ0,1 it is convenient to set

l5~d/p!~a12x! ~2.2!

and write the secular equation for the matrixCM(j,h) in the
form

det@CM~j,h!2lI M#[S d

pD M

@~j1h22x!PM21~x!

2~12jh!PM22~x!#50, ~2.3!

wherePM(x) is the polynomial inx of degreeM defined as

PM~x![det@~p/d!CM~0,0!2~a12x!I M#. ~2.4!

Since the matrix (p/d)CM(0,0) has eigenvaluesa
12 cos@pk/(M11)#, k50, . . . ,M , one can readily show tha

PM~x!52M )
k51

M

$cos@pk/~M11!#2x%5~21!MUM~x!,

~2.5!

where Un(x) is the Chebyshev polynomial of the seco
kind. With the aid of the recurrence relationshipUn11(x)
22xUn(x)1Un21(x)50, the secular equation~2.3! can be
cast in the form

~12jh!UM~x!1~2xjh2j2h!UM21~x!50. ~2.6!

It is convenient to substitute the variablex by a new variable
f

ed

x5H cosf, uxu<1

coshf, uxu>1,
~2.7!

which leads to the representation

UM~x!5H sin@~M11!f#/sinf, uxu<1

sinh@~M11!f#/sinhf, uxu>1.
~2.8!

Assuming first thatuxu<1 and jhÞ1, we rewrite Eq.
~2.6! as an equation for the unknown variablef

sin@~M11!f#

sin~Mf!
5

j1h22jh cosf

12jh
[ f R~f;j,h!.

~2.9!

Due to Eq.~2.7! we need to consider only the roots in th
interval fP@0,p#. Note that when the probabilitiesa, b
take values in the interval (0,1), then the parametersj, h
range in the interval (2d,1`). One can readily see that th
number of real-valued solutions of Eq.~2.9! depends on the
values ofj and h ~or p, a, and b). Obviously, the case
jh51, which in terms ofp, a, andb reads

~12a!~12b!512p, ~2.10!

defines a special line in the parameter space – this is the
on which the mean field approximation becomes exact
remarkable feature of the spectral problem on the mean fi
line is that it has an exact and simple explicit solution. Th
for h5j21 Eq. ~2.6! has the obvious rootx5coshj which
yields the largest eigenvalue of the mean field mat
CM

mf(j)[CM(j,j21):

lM
mf~1!5~d/p!~a1j1j21!. ~2.11!

For jÞ1 this eigenvalue singles out from the rest of t
spectrum given by theM21 zeroes ofUM21(x):
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lM
mf~k!5~d/p!Fa12 cos

p~k21!

M G , k52, . . . ,M .

~2.12!

The eigenvector ofCM
mf(j) corresponding to the largest e

genvalue~2.11! has the components

uuM
mf~1!&1[uM

mf~1,1!51, uuM
mf~1!& l[uM

mf~ l ,1!50,

for l 52, . . . ,M , ~2.13!

and the remaining eigenvectorsuuM
mf(k)&, k52, . . . ,M , with

eigenvalues~2.12!, are given by

uuM
mf~k!&1[uM

mf~1,k!50,

FIG. 1. The phase diagram in thea-b plane forp50.75. Re-
gions A, B, C, and D are distinguished by different spectral pr
erties of the matrixCM . The maximum-current phase occurs
region A. Regions B, C, and D correspond to the low-density ph
for a,b and the high-density phase fora.b; the coexistence line
a5b in region D is shown by dashed line. The curved solid line
the mean-field line (12a)(12b)512p.
uuM
mf~k!& l[uM

mf~ l ,k!5A 2

M
sin

p~M112 l !~k21!

M

for l 52, . . . ,M . ~2.14!

Two other special lines in the space of parameters
defined by the equations

a5ac[12A12p, b5bc[12A12p, ~2.15!

which correspond toj51 and h51, respectively. The
analysis of the secular equation~2.9! shows that there ar
four regions in the squarea,bP@0,1#2, see Fig. 1, distin-
guished by different sets of eigenvalues and eigenvec
Below we consider these four regions separately. For
sake of simplicity, in the remainder we omit the expli
dependence on the parametersp, j, andh ~or p, a, andb)
from the notation of the matrixCM , its eigenvalues an
eigenvectors. The eigenvalues are labeled in the orde
decreasing magnitude.

A. Region A: acËaÏ1 and bcËbÏ1

In terms of j and h this region is defined by2A12p
<j,1 and2A12p<h,1. Since then the right-hand sid
of Eq. ~2.9! is a monotonic function off, ranging between
f (0;j,h),1 and f (p;j,h).21; for sufficiently largeM
this equation has exactlyM simple real rootsfM(k), k
51, . . . ,M , in the interval (0,p); see Fig. 2. These root
satisfy the inequalities

p~k21!/M,fM~k!,pk/M , k51, . . . ,M . ~2.16!

According to Eqs.~2.2! and ~2.7!, the eigenvalues of th
matrix CM are

lM~k!5~d/p!@a12 cosfM~k!#, k51, . . . ,M .
~2.17!

A complete set of orthonormal eigenvectors ofCM is given
by the column vectorsuuM(k)&, k51, . . . ,M , with compo-
nents

-

e

FIG. 2. The behavior of the left-hand sidef L

~solid line! and the right-hand sidef R ~different
broken lines! of Eq. ~2.9! at M510 is shown as a
function off. The broken lines depictingf R are:
dotted ~region A!, short-dashed~region B!,
dashed~region C!, and dashed-dotted~region D!.
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uuM~k!&1[uM~1,k!5bM~k!
sin@MfM~k!#

A12jh
,

uuM~k!& l[uM~ l ,k!5bM~k!sin@~M112 l !fM~k!#

for l 52, . . . ,M , ~2.18!

wherebM(k) is the normalization constant
ts

es

a

bM~k!521/2H M1@11jh2~j1h!

3cosfM~k!#
sin2@MfM~k!#

~12jh!sin2fM~k!J 21/2

.

~2.19!

SincefM(k) satisfies Eq.~2.9!, we have

tan@MfM~k!#5
~12jh!sinfM~k!

j1h2~11jh!cosfM~k!
, ~2.20!

and from inequalities~2.16! it follows that
sin@MfM~k!#5
~21!k21u~12jh!sinfM~k!u

@122j cosfM~k!1j2#1/2@122h cosfM~k!1h2#1/2
. ~2.21!

With the aid of the above equalities, the normalization constant~2.19! can be written as

bM~k!521/2H M1
~12jh!@11jh2~j1h!cosfM~k!#

@122j cosfM~k!1j2#@122h cosfM~k!1h2#J
21/2

. ~2.22!
ly

n

Equations~2.21! and ~2.22! are convenient for taking the
limit M→`.

Thus, the real symmetric matrixCM is diagonalized by
the similarity transformation

C̃M[UM
21CMUM5S lM~1! 0 . . . 0

0 lM~2! . . . 0

. . . . . . . . . . . .

0 0 . . . lM~M !

D ,

~2.23!

where UM is the real orthogonal matrix with elemen
(UM) l ,k5uM( l ,k), l ,k51, . . . ,M , and UM

215UM
T , the

transposed ofUM .

B. Region B: „1Àa…„1Àb…Ë1Àp and aËac or bËbc

In this regionjh,1 and eitherj.1 and 2A12p<h
,j21, or h.1 and 2A12p<j,h21. Since f R(0;j,h)
.1 and f R(p;j,h).21, for sufficiently largeM Eq. ~2.9!
hasM21 simple real rootsfM(k), k52, . . . ,M , in the in-
terval (0,p); see Fig. 2. These roots satisfy inequaliti
~2.16!. The missing eigenvalue ofCM is provided by the pair
of complex conjugate imaginary solutionsf56 ifM(1) of
Eq. ~2.9! or, equivalently, by the pair of real solutionsf
56fM(1) of the equation

sinh@~M11!f#

sinh~Mf!
5

j1h22jh coshf

12jh
[ f R~ if;j,h!

~2.24!

which follows from Eqs.~2.6! and ~2.8! when uxu>1. Note
that for f>0 the left-hand side of the above equation is
monotonically increasing function off with a minimum 1
1M21 at f50, while the right-hand side is a monotonical
decreasing function off with a maximum atf50,

f R~0;j,h!5
j1h22jh

12jh
.1. ~2.25!

Hence, for large enoughM there is a unique positive solutio
of Eq. ~2.24!; see Fig. 3. Its asymptotic form asM→` at
fixed j.1 andh,j21 is

FIG. 3. The behavior of the differenceDM between the left-hand
side f L and the right-hand sidef R of Eq. ~2.24! at M510, as a
function of the dimenshionless argumentf. The lines are labeled
according to the regions: dotted~region A!, short-dashed~region
B!, dashed~region C!, and dashed-dotted~region D!; the latter case
is represented by two lines: at a symmetric~line D!, and asymmetric
~line D1) point in region D.
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fM~1!5 ln j2
~j2j21!~12jh!

j2h
j22M1O~j24M !.

~2.26!

In the case whenh.1 andj,h21 the asymptotic form of
fM(1) as M→` follows from Eq. ~2.26! by exchanging
places ofj andh.

It is easily seen thatf5fM(1) yields the largest eigen
value of the matrixCM ,

lM~1!5~d/p!@a12 coshfM~1!#, ~2.27!

which singles out from the rest of the spectrum. The rema
ing M21 eigenvalues are given by Eq.~2.17! with
fM(k), k52, . . . ,M , satisfying Eq.~2.9!. The eigenvector
of the matrixCM with eigenvalue~2.27! is the column vector
uuM(1)& with components

uuM~1!&1[uM~1,1!5bM~1!
sinh@MfM~1!#

A12jh
for l 51,

uuM~1!& l[uM~ l ,1!5bM~1!sinh@~M112 l !fM~1!#

for l 52, . . . ,M , ~2.28!
s

o

s

e

-

where the normalization constant

bM~1!521/2H @~j1h!coshfM~1!212jh#

3
sinh2@MfM~1!#

~12jh!sinh2fM~1!
2M J 21/2

~2.29!

is the analytical continuation to imaginaryfM(1) of expres-
sion ~2.19! at k51. One can readily check that on approac
ing the linejh51 from region B the eigenvalues and eige
vectors ofCM(j,h) tend to the corresponding eigenvalu
lM

mf(k) and eigenvectorsuuM
mf(k)& of the mean field matrix

CM
mf(j)5CM(j,j21), see Eqs.~2.11!–~2.14!.
Note that as a direct consequence of Eq.~2.24! one ob-

tains the equalities; compare with Eqs.~2.20! and ~2.21!,

tanh@MfM~1!#5
~12jh!sinhfM~1!

j1h2~11jh!coshfM~1!
,

~2.30!

and
sinh@MfM~1!#5
u12jhusinhfM~1!

@2j coshfM~1!212j2#1/2@2h coshfM~1!212h2#1/2
. ~2.31!
he

l

r-
g
n

Thus, in region B the real symmetric matrixCM is diago-
nalized by the similarity transformation~2.23!, where the
first column of the real orthogonal matrixUM is given by Eq.
~2.28!, and the remaining columnsk52, . . . ,M , have com-
ponents of the form~2.18!.

C. Region C: „1Àa…„1Àb…Ì1Àp and aÌac or bÌbc

In this regionjh.1 and eitherj.1 andj21,h,1, or
h.1 and h21,j,1. Now the off-diagonal element
(CM)1,25(CM)1,25 iAjh21, see Eq.~2.1!, are imaginary.
Nevertheless, the coefficients in the secular equation~2.6!
are real, since they depend only on the product of the ab
matrix elements. Therefore, after substitution~2.7!, the equa-
tion for the spectrum ofCM takes again one of the form
~2.9! or ~2.24!. Since f R(0;j,h),1 and f R(p;j,h),21,
for sufficiently largeM Eq. ~2.9! hasM21 simple real roots
fM(k), p(k22)/M,fM(k),p(k21)/M , k52, . . . ,M ;
see Fig. 2. The missing eigenvalue ofCM is provided by the
pair of real solutionsf56fM(1) of Eq. ~2.24!. To show
that for large enoughM this equation has a unique positiv
solution, we consider the difference, see Fig. 3,

DM~f;j,h![
sinh@~M11!f#

sinh~Mf!
2

2jh coshf2j2h

jh21

52
ef1jhe2f2j2h

jh21
1@coth~Mf!

21#sinhf. ~2.32!
ve

The M→` limit function D`(f;j,h) first increases from a
positive value atf50, attains maximum atf5 lnAjh, then
monotonically decreases crossing the abscissa atf
5 ln(max$j,h%) and tending to2` like 2(jh21)21expf
asf→`. The perturbative solution of Eq.~2.24! asM→`
at fixedj.1 andj21,h,1 yields

fM~1!5 ln j1
~j2j21!~jh21!

j2h
j22M1O~j24M !.

~2.33!

In the case whenh.1 andh21,j,1 the asymptotic form
of fM(1) follows by exchanging places ofj and h in Eq.
~2.33!. As it is readily seen by comparison with Eq.~2.26!,
fM(1) has the same analytical form in regions B and C. T
largest eigenvalue of the matrixCM is given by Eq.~2.27!;
the remaining M21 eigenvalues have the form~2.17!,
wherefM(k), k52, . . . ,M , are the solutions of Eq.~2.9!.

The eigenvector of the matrixCM which corresponds to
the largest eigenvalue~2.27! can be obtained by analytica
continuation of Eq.~2.28! from jh,1 in region B tojh
.1 in region C. At that we take into account that the no
malization constant~2.29! passes through zero on crossin
the mean field linejh51, and becomes imaginary in regio
C. As a result we obtain the column vectoruuM(1)& with
components



.

r

at

ns
d

.

l

e

:

C,

o

ng

-

en-

PRE 61 2307EXACT RESULTS FOR A FULLY ASYMMETRIC . . .
uuM~1!&1[uM~1,1!5bM~1!
sinh@MfM~1!#

Ajh21
,

uuM~1!& l[uM~ l ,1!5 i bM~1!sinh@~M112 l !fM~1!#

for l 52, . . . ,M . ~2.34!

Here the constantbM(1) is given by, compare with Eq
~2.29!,

bM~1!521/2H @~j1h!coshfM~1!212jh#

3
sinh2@MfM~1!#

~jh21!sinh2fM~1!
1M J 21/2

, ~2.35!

where (j1h)coshfM(1)212jh.0.
The remaining eigenvalueslM(k), k52, . . . ,M , are of

the form ~2.17!, and the corresponding eigenvectors a
given by the analytical continuation of Eq.~2.18! across the
mean field line:

uuM~k!&1[uM~1,k!5bM~k!
2 i sin@MfM~k!#

Ajh21
,

uuM~k!& l[uM~ l ,k!5bM~k!sin@~M112 l !fM~k!#

for l 52, . . . ,M . ~2.36!

Here the constantbM(k) is given by expression~2.22!, as it
is in regions A and B.

The diagonalization problem for the matrixCM in regions
C and D~see below! differs in one essential aspect from th
in regions A and B: forjh.1 the matrixCM is complex
symmetric, with (CM)1,25(CM)2,15 iAjh21, and not Her-
mitian ~or real symmetric!. Due toCM

† CMÞCMCM
† , the ma-

trix CM cannot be diagonalized by means of unitary tra
formation. However, sinceCM has a simple real-value
spectrum, the similarity transformation~2.23! with the com-
plex orthogonal matrixUM , UM

215UM
T , the elements of

which (UM) l ,k5uM( l ,k), l ,k51, . . . ,M , are defined in Eqs
~2.34! and ~2.36!, brings it to a diagonal form. Due toUM

21

ÞUM
† , the normalization constantsbM(k) of the eigenvec-

tors uuM(k)&, k51, . . . ,M , do not equal their reciproca
norm but are determined from the conditionUM

T UM5I M .

D. Region D: aËac and bËbc

In this regionj.1 and h.1. The essential differenc
from the previous case is that now bothf R(f;j,h).1 and
f R(p;j,h),21, so that for sufficiently largeM Eq. ~2.9!
hasM22 simple real rootsfM(k), k53, . . . ,M , in the in-
terval (0,p), see Fig. 2. The two missing eigenvalues ofCM
are given by the positive solutionsf5fM(k) with k51,2 of
equation ~2.24!. Indeed, in this region the limit function
D`(f;j,h), see Eq.~2.32!, begins to increase from anega-
tive value at f50, attains a positive maximum at f
5 lnAjh, and then monotonically decreases to2` as f
→`. Thus, it crosses the abscissa at two positive valuesf
5 ln j andf5 ln h; the behavior ofDM(f;j,h) for largeM
e

-

is shown in Fig. 3. A perturbative expansion of Eq.~2.24! as
M→` at fixedj.h.1 yields the roots

fM~1!5 ln j1
~j2j21!~jh21!

j2h
j22M1O~j24M !

~2.37!

and

fM~2!5 ln h2
~h2h21!~jh21!

j2h
h22M1O~h24M !.

~2.38!

Note thatfM(1) has the same analytical form as in region
see Eq.~2.33!.

The casej5h.1 is a special one, since then the tw
roots

fM~1!5 ln j1~j2j21!j2M1O~j22M !,

fM~2!5 ln j2~j2j21!j2M1O~j22M ! ~2.39!

become degenerate in the limitM→`.
Now there are two large eigenvalues of the matrixCM ,

lM~k!5~d/p!@a12 coshfM~k!# k51,2, ~2.40!

which split off from the rest of the spectrum. The remaini
M22 eigenvalues have the form~2.17!, where
fM(k), p(k22)/M,fM(k),p(k21)/M , k53, . . . ,M ,
are the solutions of Eq.~2.9!.

To obtain the eigenvectorsuuM(k)&, k51,2, of the matrix
CM with the two largest eigenvalues~2.40! by analytical
continuation from region C, we take into account that forj
>h.1 one has

~j1h!coshfM~1!212jh.0.~j1h!coshfM~2!

212jh.
~2.41!

Therefore, the normalization constantbM(1) is defined by
the same expression~2.35! as in region C, and the compo
nents of the eigenvectoruuM(1)& are given by Eq.~2.34!.
Since the right-hand side of Eq.~2.35! with fM(1) replaced
by fM(2) becomes imaginary, the components of the eig
vector uuM(2)& are

uuM~2!&1[uM~1,2!5bM~2!
i sinh@MfM~2!#

Ajh21
,

uuM~2!& l[uM~ l ,2!52bM~2!sinh@~M112 l !fM~2!#

for l 52, . . . ,M , ~2.42!

where the normalization constantbM(2) is

bM~2!521/2H @11jh2~j1h!coshfM~2!#

3
sinh2@MfM~2!#

~jh21!sinh2fM~2!
2M J 21/2

. ~2.43!
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The remaining eigenvectorsuuM(k)&, k53, . . . ,M , have
the same analytical form as in region C, see~2.36!, with
constantbM(k) given by Eq.~2.22!. It should be noted that a
large but finiteM the eigenvaluelM(2) and eigenvector
uuM(2)& defined in region C preserve their analytical form
a O(M 21) neighborhood of the boundary line between
and D, on the side of region D. For example, the solution
fM(2) of Eq. ~2.9! is real positive for 0<h21,eM(j), j
.1, where eM(j)5@M2j/(j21)#21 vanishes ath51
1eM(j) and becomes imaginary forh.11eM(j) when the
next to the largest solution of Eq.~2.24! emerges.

As in region C, the complex symmetric matrixCM in
region D is diagonalized by the similarity transformatio
~2.23!, where the components in the first and the seco
columns of the complex orthogonal matrixUM are defined in
Eqs.~2.34! and ~2.42!, respectively, while the remainingM
22 columns (k53, . . . ,M ) are given by Eq.~2.36!.

E. Summary

Here we summarize the qualitative features of the sp
trum of the truncated propagator matrixCM at largeM in the
four regions of the parameter space shown in Fig. 1.

~1! Everywhere the spectrum is real and nondegenerat
is a symmetric function of the parametersj and h. The
eigenvectors are real in regions A and B, and some of t
components are imaginary in regions C and D. In the wh
space of parameters the normalization condition
( l 51

M uM
2 ( l ,k)51, k51, . . . ,M .

~2! In region A the spectrum fills with uniform density th
interval from (d/p)(a22) to (d/p)(a12), and becomes
quasicontinuous in the limitM→`.

~3! In regions B, C, and D the largest eigenvaluelM(1)
splits from the ‘‘quasicontinuous’’ part of the spectrum;
region D so does also the next-to-the-largest eigenva
lM(2).

~4! The spectra in regions B, C, and D, excluding the li
jÞh in region D, have an important feature in common w
the mean field case (jh51): except at the point (j,h)
5(1,1), the whole spectrum is dominated by the single la
est eigenvalue

lM~1!5H ~d/p!~a1j1j21!1O~j2M ! for j.h

~d/p!~a1h1h21!1O~h2M ! for h.j,
~2.44!

which differs from the mean field one, see Eq.~2.11!, only
by exponentially small inM corrections. The point (j,h)
5(1,1) is a boundary point of all the four regions and b
longs to the mean field line as well.

~5! On the linej5h in region D the two largest eigen
values become asymptotically~as M→`) degenerate, se
Eq. ~2.39!.

As is known@9#, in the thermodynamic limitM→` re-
gion A corresponds to themaximum current phase; regions
B, C, and D for j.h (a,b) belong to thelow-density
phase, and for j,h (a.b) belong to thehigh-density
phase. The distinction between the latter three regions with
a single phase is expected to affect more subtle charact
tics like density profile, correlation functions, rate of a
proach to the thermodynamic limit, etc.
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III. CALCULATION OF THE CURRENT

From Eq.~1.16! it is clear that the basic quantity we hav
to calculate is

ZL~j,h!5^WuCLuV&5^WMuCM
L ~j,h!uVM&, ~3.1!

where the last equality holds independently ofM for all M
>@L/2#11. By applying the similarity transformation~2.23!
of the matrixCM , we obtain

ZL~j,h!5^WMuUMC̃M~j,h!UM
21uVM&

5 (
k51

M

lM
L ~k!uM

2 ~1,k!. ~3.2!

In region A, from Eq.~2.17! for the eigenvalueslM(k)
and expressions~2.18!, ~2.22! for the componentsuM(1,k),
by using the uniform distribution offM(k), k51, . . . ,M
over the interval@0,p#, see inequalities~2.16!, we obtain in
the limit M→` the following exact result (jÞh):

ZL
A~j,h!5S d

pD LF j

j2h
I L~j!1

h

h2j
I L~h!G , ~3.3!

where

I L~j!5
2

pE0

p

df
~a12 cosf!Lsin2f

122j cosf1j2 . ~3.4!

The result forZL
A(j,j), with uju,1 in region A, can be

obtained by taking the limith→j in expression~3.3!:

ZL
A~j,j!5S d

pD LF I L~j!1j
]

]j
I L~j!G[~d/p!L~12j2!KL~j!,

~3.5!

where

KL~j!5
2

pE0

p

df
~a12 cosf!Lsin2f

~122j cosf1j2!2 . ~3.6!

One can perform the integration in Eq.~3.4! for uju,1 to
obtain the finite sum

I L~j!5SL~j![
aL

L11 F (
k50

[L/2] S L11

2k11D a22k (
m50

k

~2m11!

3S 2k11

k2m D j2m1 (
k51

[(L11)/2] S L11

2k D
3a22k11 (

m51

k

2mS 2k

k2mD j2m21G . ~3.7!

A similar representation forKL(j) follows from Eqs.~3.5!
and ~3.7!. As expected, Eqs.~3.3! and ~3.7! imply that
ZL(j,h) is a polynomial symmetric inj andh.

In regions B and C one has to take into account the c
tribution of the single largest eigenvaluelM(1), see Eq.
~2.27!, and in region D one has also to take into account
contribution of the next-to-the-largest eigenvaluelM(2), see
Eq. ~2.40!. The remaining part of the spectrum yields int
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grals of the same analytical form as in region A, see E
~3.3! and ~3.4!. From the explicit expressions foruM(1,1),
given by Eqs.~2.28! and ~2.29! in region B, and by Eqs
~2.34! and ~2.35! in regions C and D, we obtain in the lim
M→`

lim
M→`

uM
2 ~1,1!5H ~j2j21!/~j2h! for j.h

~h2h21!/~h2j! for h.j.
~3.8!

Similarly, from expressions~2.42! and~2.43! for uM(1,2) in
region D we obtain

lim
M→`

uM
2 ~1,2!5H 2~h2h21!/~j2h!, for j.h

2~j2j21!/~h2j! for h.j.
~3.9!

Thus, by taking the limitM→` in regions B and C atj
.h, we obtain the exact result

ZL
B,C~j,h!5S d

pD L j2j21

j2h
~a1j1j21!L1ZL

A~j,h!.

~3.10!

The caseh.j follows from the above expression by e
changing places ofj andh. Note that by using the identitie

I L~j.1!5j22I L~j21!5j22SL~j21! ~3.11!

and

~a1j1j21!L~12j22!5SL~j!2j22SL~j21!
~3.12!

one can cast Eq.~3.10! in the form of exactly the same sym
metric polynomial inj andh as in region A, namely,

ZL
B,C~j,h!5S d

pD LF j

j2h
SL~j!1

h

h2j
SL~h!G .

~3.13!

In a similar way, by taking the limitM→` in region D at
jÞh, we obtain

ZL
D~j,h!5S d

pD LFj2j21

j2h
~a1j1j21!L1

h2h21

h2j

3~a1h1h21!LG1ZL
A~j,h!. ~3.14!

Obviously, the above expression is a symmetric function oj
and h. Since now bothj.1 andh.1, the application of
identities~3.11! and ~3.12! brings Eq.~3.14! in the form of
the polynomial~3.13!.

Now we consider the limitM→` on the linej5h in
region D. Due to the asymptotic form~2.39! of fM(1) and
fM(2), which leads to inequalities~2.41! taken atj5h, we
obtain from Eq.~2.24!
s.
sinh@MfM~1!#5

~j221!sinhfM~1!

2j coshfM~1!212j2 ,

~3.15!

sinh@MfM~2!#5
~j221!sinhfM~2!

11j222j coshfM~2!
.

From Eqs.~2.35! and ~2.43! for the normalization constant
bM(1) andbM(2), respectively, we obtain atj5h

bM
2 ~1!52Fsinh@MfM~1!#

sinhfM~1!
1M G21

,

~3.16!

bM
2 ~2!52Fsinh@MfM~2!#

sinhfM~2!
2M G21

.

Hence, it follows that at largeM

uM
2 ~1,1!5

jM

2j
1

j1j21

2j
1O~Mj2M !,

~3.17!

uM
2 ~1,2!52

jM

2j
1

j1j21

2j
1O~Mj2M !.

Finally, by rewritingZL
D(j,j) indentically as

ZL
D~j,j!5lM

L ~1!@uM
2 ~1,1!1uM

2 ~1,2!#2@lM
L ~1!

2lM
L ~2!#uM

2 ~1,2!1 (
k53

M

lM
L ~k!uM

2 ~1,k!,

~3.18!

and passing to the limitM→`, we obtain

ZL
D~j,j!5S p

dD LF L~j2j21!2

j~a1j1j21!
111j22G ~a1j1j21!L

1ZL
A~j,j!, ~3.19!

whereZL
A(j,j) is defined in Eq.~3.5!. Naturally, the same

result follows by taking the limith→j in Eq. ~3.14!.

A. Current in the maximum-current phase

The exact results for the current follow from Eq.~1.16!
and the expressions forZL(j,h) in region A. Thus, from Eq.
~3.3! it follows that whenjÞh the current equals the ratio o
the symmetric inj andh polynomials

JL~j,h!5S p

dD jSL21~j!2hSL21~h!

jSL~j!2hSL~h!
~3.20!

and forj5h we obtain from Eq.~3.5!

JL~j,j!5~p/d!KL21~j!/KL~j!. ~3.21!

The asymptotic expressions for the current at largeL are
most readily obtained by applying the Laplace method to
integral in Eq.~3.4!:

I L~j!5
~a12!L13/2

2Ap~12j!2
L23/2@11O~L21!#, uju,1.

~3.22!

By substitution of this result in Eq.~3.3!, we obtain the
asymptotic form ofZL(j,h) for jÞh
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ZL
m.c.~j,h!5

12jh

2Ap~12j!2~12h!2 S d

pD L ~a12!L13/2

L3/2

3@11O~L21!#. ~3.23!

From Eqs.~3.5! and ~3.22! one can easily derive that onl
theL-independent prefactor in Eq.~3.23! changes on the line
j5h

ZL
m.c.~j,j!5

11j

2Ap~12j!3 S d

pD L ~a12!L13/2

L3/2
@11O~L21!#.

~3.24!

By substituting the above expressions forZL
m.c.(j,h) in

Eq. ~1.16!, we obtain that the large-L asymptotic form of the
current in the maximum-current~m.c.! phase is

JL
m.c.5

12A12p

11A12p
@11O~L21!# ~3.25!

independently of the parametersa andb. In the thermody-
namic limit one recovers the well-known mean-field res
@9#.

B. Current in the low- and high-density phases

At finite L the exact expression for the current in the
phases is given by the same ratio of polynomials as in
maximum-current phase, see Eqs.~3.20! and ~3.21!. Since
both the low- and high-density phases take place in reg
B, C, and D, the large-L asymptotic form ofZL(j,h) for j
Þh is given, up to exponentially small corrections, by t
contribution of the largest eigenvalue of the mat
CM(j,h). Since one of the phases maps on the other un
the exchange of argumentsj↔h, it suffices to consider the
casej.h. Appropriate bounds on the correction terms c
be obtained by using the inequalityI L(j)<(a12)LI 0(j),
whereI 0(j)51 for uju<1 andI 0(j)5j22 for uju>1. Thus,
for j.1.h in regions B and C, we obtain from Eq.~3.10!
the following bounds onZL

B,C(j,h):

S d

pD L j2j21

j2h
~a1j1j21!LF12

jh

j221S a12

a1j1j21D LG
,ZL

B,C~j,h!,S d

pD L j2j21

j2h
~a1j1j21!L

3F11
1

j221S a12

a1j1j21D LG .

~3.26!

In region D, from Eq.~3.14! for j.h.1 and Eq.~3.19! for
j5h.1 it follows that the correction terms are also exp
nentially small inL.

Thus, everywhere in the low-density~l.d.! phase the con-
tribution from the largest eigenvalue dominates over the
from the rest of the spectrum. Hence, up to exponenti
small in L corrections
t

e

s

er

n

-

e
y

JL
l.d.~j,h!.~p/d!~a1j1j21!215

a~p2a!

p~12a!
. ~3.27!

The result for the high-density~h.d.! phase follows from
Eq. ~3.27! under the replacement ofj by h ~i.e., of a by b):

JL
h.d.~j,h!.~p/d!~a1h1h21!215

b~p2b!

p~12b!
.

~3.28!

Only on the linej5h.1 in region D the currentJL
D(j,j)

hasO(L21) corrections to the thermodynamic limit, see E
~3.19!.

In the thermodynamic limit the above expressions for
current coincide with the corresponding mean-field resu
@9#.

IV. CALCULATION OF THE LOCAL DENSITY

Due to the choice of the matricesD andC, see Eqs.~1.24!
and ~1.25!, respectively, and the vectorsuV&, ^Wu, see Eq.
~1.17!, the expression for the local densityrL( i ), i
51, . . . ,L, defined in Eq.~1.16!, depends only on the ele
ments in the first@L/2#11 rows and columns. Therefore, fo
the calculation of the scalar product one can use the tr
cated at M>@L/2#11 representation of the above
mentioned matrices and vectors,

rL~ i !5ZL
21^WMuCM

i 21DMCM
L2 i uVM&

5ZL
21^WMuUMC̃M

i 21D̃MC̃M
L2 iUM

21uVM&. ~4.1!

HereC̃M is the diagonal form~2.23! of the truncated lattice
translation operatorCM , and the transformed truncated m
trix D̃M5UM

21DMUM has the elements (m,k51, . . . ,M )

~D̃M !m,k5
d

p
@QL~m,k!1huM~1,m!uM~1,k!#1

12p

p
dm,k ,

~4.2!

where

QL~m,k!5A12jhuM~1,m!uM~2,k!1 (
n52

M21

uM~n,m!

3uM~n11,k!. ~4.3!

For the sake of simplicity, here we omit the indication of t
explicit dependence of the eigenvalues and eigenvector
the parametersj and h, see Eq.~1.20!, as well as on the
hopping probabilityp.

By straightforward calculation of the scalar product in E
~4.1!, we obtain the following general expression for the l
cal density:

rL~ i !5
d

pZL
@VL~ i !1hZi 21ZL2 i1dZL21#, ~4.4!

where
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VL~ i ![ (
m51

M

lM
i 21~m!uM~1,m!

3 (
k51

M

lM
L2 i~k!uM~1,k!QL~m,k!. ~4.5!

In Sec. III we have found different analytical represen
tions for ZL in the parameter space shown in Fig. 1. It r
mains to find the corresponding representations forVL( i ) by
using the explicit knowledge of the eigenvalueslM(k), k
51, . . . ,M , and the components of the eigenvecto
uM(m,n), m,n51, . . . ,M , of the matrix CM . Since their
analytical form depends on the values ofj andh, the deri-
vation is given in Appendix A for region A, and in Appendi
B for regions B, C, and D.

A. Local density in the maximum-current phase

This phase appears in region A after taking first the lim
M→` and then the limitL→`. For finite L and M the
eigenvalues of the matrixCM are given by Eq.~2.17!, and
the components of the eigenvectors by Eqs.~2.18! and
~2.22!. After somewhat lengthy transformations, the sums
the right-hand side of Eq.~4.5! can be cast in a form conve
nient for taking the limitM→`. As it is shown in Appendix
A, the final exact result for the particle density in th
maximum-current phase is

rL~ i !5
1

2
~12JL

A!1
d

2pZL
A @FL~ i !2~j2h!Zi 21

A ZL2 i
A #.

~4.6!

HereZn(j,h) is defined in Eq.~3.3! for jÞh and Eq.~3.5!
for j5h; JL(j,h) is the current in that phase, see Eq.~3.20!
for jÞh and Eq.~3.21! for j5h; the termFL( i ;j,h) is an
antisymmetric~with respect to the center of the chain! func-
tion of the integer coordinatei,

FL~ i ;j,h!52FL~L2 i 11;j,h!, ~4.7!

defined for 1< i<@L/2# by the equation

FL~ i ;j,h!5S d

pD L21

~12jh! (
n50

L22i

I L2 i 2n21~j!I i 1n21~h!.

~4.8!

To obtain the particle density profile on themacroscopic
scale r5 i /L, asL→`, we assume that the lattice sitei is far
from the two ends of the chain, i.e.,i @1 andL2 i @1. Then,
for the calculation ofrL( i ;j,h) one can use the asymptot
form ~3.23! of Zn(j,h) for jÞh, and~3.24! for j5h. Thus,
by taking into account the asymptotic form of the curre
~3.25!, we obtain that the position-independent term in t
right-hand side of Eq.~4.6! yields the contribution

1

2
@12JL

m.c.~j,h!#5
A12p

11A12p
@11O~L21!#. ~4.9!

For the contribution of the asymmetric functionFL( i ) we
obtain asL→`
-
-

s

t

n

t
e

d

2p

FL~ i !

ZL
A

.
L3/2Ad

4Ap~11d!
(
k50

L22i 1

~L2 i 2k21!3/2~ i 1k21!3/2

.
L21/2Ad

4Ap~11d!
E

0

122r dx

~12r 2x!3/2~r 1x!3/2

5
L21/2Ad

Ap~11d!

122r

Ar ~12r !
. ~4.10!

The last position-dependent term in Eq.~4.6! yields higher-
order correctionsO(L23/2).

From the above results it follows that within correctio
of orderO(L21/2), the density profile (0,r ,1)

rL
m.c.~rL !.

A12p

11A12p
1

L21/2Ad~122r !

Ap~11d!Ar ~12r !
~4.11!

is independent of the parametersa andb and has the same
shape as in the case of stochastic-sequential dynamics
Eq. ~53! in @10#. The above asymptotic form is compare
with results of computer simulations in Fig. 4. In the the
modynamic limit L→` the particle density equals exact
the mean-field result for the maximum-current phase.

B. Local density in the low-density phase

The low-density phase exists in regions B, C, and D
j.h, where the contribution from the eigenvector with th
single largest eigenvalue~2.44! dominates in the general ex
pression~4.4! for the local density.

The evaluation ofVL( i ) in the limit M→` is given in
Appendix B. By inserting Eq.~B13! into the general expres
sion ~4.4!, we obtain the exact result for the local density
the low-density phase in regions B and C atj.h:

rL
B,C~ i !5

d

pZL
B,CFj2j21

j2h
~d1j21!l`

L21~1!2~j2j21!

3l`
i 21~1!ZL2 i

A 2
j2h

2
ZL2 i

A Zi 21
A 1

p

2d
ZL

A

2
p

2d
ZL21

A 1
1

2
FL~ i !G . ~4.12!

As expected, the asymptotic form of the local density p
file at largeL differs from the one in the maximum-curren
phase. The first term in the right-hand side of Eq.~4.12!
yields, up to exponentially small inL corrections, the bulk
density

d1j21

a1j1j21
5

a~12p!

p~12a!
. ~4.13!

The leading-order contribution of the second term
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2
jI L2 i~j!2hI L2 i~h!

~a1j1j21!L2 i 11
~4.14!

is exponentially small inL, except close to the right bound
ary.

All the remaining terms are uniformly ini 51, . . . ,L
bounded from above by an exponentially small inL quantity
of the order

S a12

a1j1j21D L

, jÞ1. ~4.15!

By collecting the above results we obtain that up to ex
nentially small inL corrections the local density of the low
density phase in regions B and C is given by

rL
B,C~ i !.

a~12p!

p~12a!
2

jI L2 i~j!2hI L2 i~h!

~a1j1j21!L2 i 11
. ~4.16!

The qualitatively different behavior of the particle dens
profile in the maximum-current and low-density phases
illustrated by results of computer simulations in Fig. 4. O

FIG. 4. Particle density profiles versus the scaled distancr
5 i /L in the different regions of Fig. 1. The results of compu
simulations for a chain of lengthL5300 are shown in part~a! by
solid squares~region A!, solid triangles~on the coexistence line in
region D!, and dashed lines~regions B and C!; all lines are labeled
by the letter of the corresponding region. The solid line shows
asymptotic behavior described by Eq.~4.10! in region A. Parts~b!
and~c! of the figure show the enlarged portions of part~a! enclosed
in dashed squares close to the left and right ends of the ch
respectively. The asymptotic behavior describied by Eq.~4.16! in
the low-density phase and Eq.~4.27! in the high-density phase i
shown by solid lines in region B and dashed lines in region C;
results of computer simulations in region B are shown by so
squares.
-

s

clearly sees that even for a rather small system the shap
rL(rL ;j,h) as a function of the scaled distancer 5 i /L dras-
tically changes on crossing the phase boundary. In
maximum-current phase the profile has power-law deviati
from the bulk value, which are of opposite sign near the l
and right ends of the chain, and vanish asO(L21/2) when
L→`. In the low-density phase, the profile is constant~up to
exponentially small inL terms! near the left end of the chain
and changes exponentially fast with the distance near
right end. To analyze the sign of that exponential change,
note that, as follows from Eq.~3.5!,

]

]j
@jI n~j!#5~12j2!Kn~j! ~4.17!

changes sign atj51. Since in the low-density phasej.1
.h, we use the relationship~3.11! to write

jI L2 i~j!2hI L2 i~h!5j21I L2 i~j21!2hI L2 i~h!.

Obviously, this expression is positive in region B (j21

.h), and negative in region C (j21,h). Therefore, the
bending of the profile near the right end of the chain
downward in region B and upward in region C.

The exponential approach to the bulk density asL2 i
→`, predicted by the position-dependent term in Eq.~4.16!,
is in exellent agreement with the results of computer sim
lations; see Fig. 4. Note that the bulk density coincides w
the known mean-field result@9#. The asymptotic form~4.16!
can be checked against the exact relationships between
current and the local density at the end-points of the ch
Such relationships follow directly from the general expre
sions ~1.16! for JL and rL( i ) and the boundary condition
~1.15!, see, e.g.,@9#. Thus, by settingi 51 and using the left
boundary condition one obtains

rL~1;j,h!512a21JL~j,h!. ~4.18!

On the other hand, by settingi 5L and using the right bound
ary condition one finds

rL~L;j,h!5~b2121!JL~j,h!. ~4.19!

By substituting the asymptotic form~3.27! of the current in
Eq. ~4.18! one obtains~up to exponentially small inL cor-
rections! that rL

l.d.(1)5rbulk
l.d. . In a similar way, from Eq.

~4.19! one has

rL
l.d.~L !5

a~12b!~p2a!

bp~12a!
. ~4.20!

The above result coincides with the right-hand side of E
~4.16! at i 5L.

In region D we obtain from Eqs.~4.4! and ~B17! the fol-
lowing exact expression for the local density (jÞh):

e

in,

e
d
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rL
D~ i !5

12p

p
JL

D~j,h!1
d

pZL
D F12j22

j2h
l`

L21~1!

1
~j2j21!~h2h21!

j2h
l`

i 21~1!l`
L2 i~2!

2
h221

j2h
l`

L21~2!G1
d

pZL
D @2~j2j21!l`

i 21~1!ZL2 i
A

1~h2h21!l`
L2 i~2!Zi 21

A 1hZi 21
A ZL2 i

A 1VL
A~ i !#.

~4.21!

The part of region D occupied by the low-density phase c
responds toj.h.1. Hence, by taking into account Eq
~3.14! for ZL

D and Eq.~3.27! for the current, after neglecting
terms which are uniformly ini 51, . . . ,L exponentially
small asL→`, we obtain that the local density in region
is

rL
D~ i !.

a~12p!

p~12a!
1

h2h21

a1j1j21 S a1h1h21

a1j1j21 D L2 i

2
jI L2 i~j!2hI L2 i~h!

~a1j1j21!L2 i 11
. ~4.22!

A comparison with Eq.~4.16! reveals an important new fea
ture: the leading-order analytic form of the density profi
changes on passing from region C to region Dwithin the
low-density phase. Nevertheless, the density profile ha
similar shape in regions C and D, since it is constant~up to
exponentially small inL corrections! near the left end of the
chain, and tends to the bulk value exponentially fast~al-
though with different rate! as the distance from the right en
increases; the bending of the density profile near the r
end of the chain is upward in both regions C and D. One
readily check that ati 5L the local density~4.22! also satis-
fies the boundary condition~4.20!.

C. Local density in the high-density phase

The high-density phase exists in regions B, C, and D
h.j. The expression forVL( i ) follows by exchanging
places ofj and h in Eq. ~B13! @note thatZL

A(j,h) is a
symmetric polynomial inj andh#. By inserting the result in
the general Eq.~4.4!, we obtain the exact expression for th
local density in the high-density phase in regions B and C
h.j:

rL
B,C~ i !5

d

pZL
B,CFh2h21

h2j
~d1h!l`

L21~1!1~h2h21!

3l`
L2 i~1!Zi 21

A 1
h2j

2
Zi 21

A ZL2 i
A 1

p

2d
ZL

A

2
p

2d
ZL21

A 1
1

2
FL~ i !G . ~4.23!

The symmetry transformationj↔h and i↔L2 i 11
brings all the position-dependent termsin the local density
~4.23! to the form of the corresponding terms in the low
r-

a

ht
n

t

t

density phase, see Eq.~4.12!, taken with theopposite sign.
Note thatFL( i ;j,h), see Eqs.~4.7! and~4.8!, is a symmetric
function of j andh, but changes sign under the coordina
transformationi↔L2 i 11. This fact explains the antisym
metry in the bending of the density profiles in the two pha
at the opposite ends of the chain, see also the computer s
lation results shown in Fig. 4.

By ignoring the exponentially small asL→` corrections,
one obtains that the first term in the right-hand side of E
~4.12! yields the bulk density

d1h

a1h1h21
512

b

p
. ~4.24!

The leading-order contribution of the second term

hI i 21~h!2jI i 21~j!

~a1h1h21! i
~4.25!

is exponentially small inL, except close to the left boundary
All the remaining terms are uniformly ini 51, . . . ,L

bounded from above by an exponentially small quantity
the order

S a12

a1h1h21D L

, hÞ1. ~4.26!

By collecting the above results we obtain that up to exp
nentially small inL corrections the local density of the high
density phase in regions B and C is

rL
B,C~ i !.12

b

p
1

hI i 21~h!2jI i 21~j!

~a1h1h21! i
. ~4.27!

Thus, in the high-density phase the profile is constant~up
to exponentially small inL terms! near the right end of the
chain, and changes exponentially fast with the distance n
the left end. The profile bends upward in region B and dow
ward in region C. This behavior is in excellent agreeme
with the results of computer simulations; see Fig. 4. N
that the bulk density~4.24! coincides with the known mean
field result@9#.

The asymptotic form~4.27! agrees~up to exponentially
small in L corrections! with the exact relationships betwee
the current and the local density at the end-points of
chain, see Eqs.~4.18! and ~4.19!. Indeed, from Eqs.~3.28!
and ~4.18! one obtains at the left end of the chain

rL
h.d.~1!512

b~p2b!

ap~12b!
, ~4.28!

which coincides with Eq.~4.27! at i 51. At the right end
rL

h.d.(L)5rbulk
h.d. .

The asymptotic form of the density profile in the hig
density phase occupying region D, i.e., whenh.j.1, fol-
lows directly from the exact expressions~4.21! for rL

D( i ) and
~3.14! for ZL

D , after neglecting terms which are uniformly i
i 51, . . . ,L exponentially small asL→`:
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rL
D~ i !.12

b

p
2

j2j21

a1h1h21 S a1j1j21

a1h1h21D i 21

1
hI i 21~h!2jI i 21~j!

~a1h1h21! i
. ~4.29!

As in region C, the profile bends downward near the left e
of the chain and satisfies the boundary condition~4.28! at i
51. Similarly to the case of the low-density phase, t
leading-order asymptotic form of the position-depend
terms changes on passing from region C to region Dwithin
the high-density phase; compare Eqs.~4.27! and ~4.29!.

D. Local density on the coexistence line

The conditionj5h.1 defines the coexistence line b
tween the low- and high-density phases in region D. By
serting Eq.~B19! for VL

D( i ;j,j) into the general expressio
~4.4! for the local density, we obtain the exact result

rL
coex~ i ;j,j!5

d

pZL
D~j,j!

H ~j2j21!@l`
L2 i~1!Zi 21

A ~j,j!

2l`
i 21~1!ZL2 i

A ~j,j!#1~j1j23!l`
L21~1!

2~j2j21!2
d

p
l`

L22~1!1~12j22!2

3@L1~j221!i #
d

p
l`

L22~1!

1jZi 21
A ~j,j!ZL2 i

A ~j,j!1VL
A~ i ;j,j!J

1
12p

p
JL

D~j,j!. ~4.30!

By assumingmacroscopic scaleof distance, i.e., considerin
i /L5O(1) as L→`, and by ignoring theO(L21) correc-
tions we obtain the linear density profile

rL
coex~rL ;j,j!.

1

a1j1j21
@d1j211~j2j21!r #.

~4.31!

It is readily seen that, up toO(L21) corrections, the loca
density on the coexistence line changes linearly from
bulk density of the low-density phase at the left end of
chain (r 50), to the bulk density of the high-density phase
the right end (r 51); see Fig. 4.

V. DISCUSSION

For the FASEP with open boundary conditions we ha
calculated exactly the current and the local particle dens
both for finite chains and in the thermodynamic limit.
should be emphasized that our results are not based
finite-dimensional representation of the relevant alge
given by Eqs.~1.14! and ~1.15!. The truncated matricesDM
and EM do not solve the bulk algebra~1.14! because of a
defect in the last element on the main diagonal of the prod
d

t

-

e
e
t

e
y,

a
a

ct

matrix DMEM . Firstly, we find an infinite-dimensional rep
resentation for the operatorsD and E, such that the lattice
translation operatorC5E1D is ~real or complex! symmet-
ric. Secondly, we exploit the fact that for a finite chain
sizeL the quantities of interest depend only on the eleme
in the first @L/2#11 rows and columns ofC and D. This
makes possible the use of truncatedM-dimensional matrices
with M>@L/2#11, for the calculation of the finite-size cur
rent,JL , and density profile,rL( i ), i 51, . . . ,L. Thirdly, we
perform the calculations after diagonalization of the tru
cated propagatorCM by means of similarity transformation
with a symmetric~real or complex! matrix. At this step the
spectrum ofCM reveals the crucial role of the parametersj
and h in the mathematical mechanism of the phase tran
tion: if at least one ofj and h exceeds unity, the larges
eigenvalue singles out from the bounded quasicontinu
spectrum and its contribution becomes dominant at largeL.
Fourthly, we lift the truncation by passing to the limitM
→`. In this limit the expressions obtained simplify esse
tially and become valid for allL. The resulting integral rep-
resentations clearly show that for any finiteL the current and
the local particle density are real analytical functions of t
parameters. Only in the thermodynamic limitL→` do these
quantities develop different analytical forms in th
maximum-current, low-density, and high-density phas
When botha and b are less than 12A12p, two large ei-
genvalues appear. This causes a change of the leading-
asymptotic form of the position-dependent part of the lo
density within a single phase. The two largest eigenval
become degenerate on the coexistence linea5b between
the low- and high-density phases, which manifests itself
the appearance of a linear profile of the local density.

The exact expressions for the bulk current and bulk d
sity are found to coincide with the analytic continuation
the corresponding mean-field results from the line
2a)(12b)512p to the entire parameter space. This h
been conjectured in@9# on the basis of computer simulation
On the grounds that the above linetouchesall phases, and
that the analytic form of the current and bulk density do
not change within a phase, the validity of the correspond
expressions for the whole phases has been conjectured@9#.
However, these arguments do not have the status of a p
especially for the maximum-current phase which is touch
by the mean-field line just at one corner point of the pha
boundary. In our work, in addition to the above-mention
bulk quantities, we have calculated exactly the density p
files in all the phases. We have shown that the asympt
form of the profile changes whena or b crosses the value
12A12p in the high- or low-density phases, respective
A similar fact has been established in the case of rand
sequential dynamics@11#. To our knowledge, the results fo
the density profiles found here for the ordered-sequential
namics are new.

APPENDIX A

Here we derive an exact expression for the site-depen
quantityVL( i ), i 51, . . . ,L, defined in Eq.~4.5!, by taking
the limit M→` in the maximum-current phase, region A
First we perform the summation in Eq.~4.3! for QL(m,k)
and after some transformations cast the result in the form
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QL~m,k!5QL
(s)~m,k!1QL

(a)~m,k!. ~A1!

Here QL
(s)(m,k) is the symmetric~with respect tom and k!

part of QL(m,k), the explicit expression for which depend
on whethermÞk or m5k. For mÞk

QL
(s)~m,k!52

1

2

j1h

12jh
bM~m!bM~k!

3sin@MfM~m!#sin@MfM~k!#

52
1

2
~j1h!uM~1,m!uM~1,k!. ~A2!

In deriving the second equality we have used Eq.~2.18!. For
m5k we obtain

QL
(s)~k,k!5

1

2
bM

2 ~k!FM cosfM~k!2
sin@2MfM~k!#

2 sinfM~k! G
5

1

2
bM

2 ~k!FM cosfM~k!

2
~12jh!@j1h2~11jh!cosfM~k!#

RM~k;j!RM~k;h! G ,
~A3!

where

RM~k;j!5122j cosfM~k!1j2. ~A4!

The antisymmetric~with respect to the exchange ofm andk!
part of QL(m,k) is defined formÞk by

QL
(a)~m,k!5

1

2
bM~m!bM~k!

sinfM~m!sinfM~k!

cosfM~m!2cosfM~k!

2
RM~m;j!RM~k;h!1RM~m;h!RM~k;j!

4~12jh!

3
uM~1,m!uM~1,k!

cosfM~m!2cosfM~k!
. ~A5!

In the limit M→` the contribution of the term~A2! into
VL( i ) is

2
1

2
~j1h!Zi 21

A ZL2 i
A . ~A6!

The term~A3! appears in the single sum (m5k)

(
k51

M

lM
L21~k!uM

2 ~1,k!QL
(s)~k,k!, ~A7!

and only the part ofQL
(s)(k,k) which is proportional to

M cosfM(k) yields the nonvanishing in the limitM→` con-
tribution
S d

pD L21 2

pE0

p

df
~a12 cosf!L21sin2f cosf

11j222j cosf

5
1

2 Fp

d
ZL

A~j,h!2aZL21
A ~j,h!G . ~A8!

Consider now the contribution of the antisymmetric te
~A5! into VL( i ). By using the antisymmetry ofQL

(a)(m,k)
with respect tom andk, we write

VL
(a)~ i !5

1

2 (
m51

M

(
k51

M

8 @lM
i 21~m!lM

L2 i~k!

2lM
i 21~k!lM

L2 i~m!#uM~1,m!uM~1,k!QL
(a)~m,k!.

~A9!

The primed summation means that the term withm5k is
excluded from the double sum. As one can readily s
VL

(a)( i ) changes sign under the coordinate transformatioi
→L2 i 11; if L11 is even thenVL

(a)( i ) vanishes at the
center of the lattice,i 5@(L11)/2#. To take the limit M
→` we assume 2i ,L11 and write

VL
(a)~ i !52

d

p (
n50

L22i

(
m51

M

(
k51

M

8 lM
L2 i 2n21~m!lM

i 1n21~k!

3uM~1,m!uM~1,k!@cosfM~m!

2cosfM~k!#QL
(a)~m,k!. ~A10!

Now the first term in the right-hand side of Eq.~A5! yields

2
12jh

2

d

p (
n50

L22i

(
m51

M

(
k51

M

8 lM
L2 i 2n21~m!lM

i 1n21~k!

3~21!m1k
bM

2 ~m!sin2fM~m!

ARM~m;j!RM~m;h!

3
bM

2 ~k!sin2fM~k!

ARM~k;j!RM~k;h!
. ~A11!

Due to the factor (21)m1k in the summand, this part o
VL

(a)( i ) vanishes asM→` since the leading asymptoti
forms for m1k even and odd integer cancel. For 2i ,L11,
the contribution of the second term in the right-hand side
Eq. ~A5! in the limit M→` is

12jh

2 S d

pD L21

(
n50

L22i

I L2 i 2n21~j!I i 1n21~h![
1

2
FL~ i ;j,h!.

~A12!

By collecting the above results one obtains in region A

VL
A~ i !5

1

2 FFL~ i !2~j1h!Zi 21
A ZL2 i

A 1
p

d
ZL

A2aZL21
A G .

~A13!

Finally, by inserting this result into Eq.~4.4!, one obtains
expression~4.6! for the local particle density in the maxi
mum current phase.
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APPENDIX B

Here we evaluateVL( i ) in regions B, C, and D. First we
consider explicitly region B; the results for region C have t
same analytical form. Then, in region D we take into acco
the contribution of the next-to-the-largest eigenvaluelM(2),
see below.

By singling out the contributions of the eigenvector wi
the largest eigenvalue, we write

VL~ i !5lM
L21~1!uM

2 ~1,1!QL~1,1!

1lM
i 21~1!uM~1,1!(

k52

M

lM
L2 i~k!uM~1,k!QL~1,k!

1lM
L2 i~1!uM~1,1! (

m52

M

lM
i 21~m!uM~1,m!QL~m,1!

1VL8~ i !. ~B1!

In region B we have the explicit expressions

QL~1,1!5bM
2 ~1! (

n51

M21

sinh@~M112n!fM~1!#

3sinh@~M2n!fM~1!#,

QL~1,k!5bM~1!bM~k! (
n51

M21

sinh@~M11n!fM~1!#

3sin@~M2n!fM~k!#, ~B2!

QL~m,1!5bM~1!bM~m! (
n51

M21

sin@~M112n!fM~m!#

3sinh@~M2n!fM~1!#.

The last term in the right-hand side of Eq.~B1!, namely
VL8( i ), differs from VL( i ) defined in Eq.~4.5! only in that
the sums overm and k run from 2 toM. Therefore, in the
limit M→` this term yields in regions B and C the sam
result as in region A, see Eq.~A13!,

lim
M→`

VL8~ i !5VL
A~ i !. ~B3!

By direct evaluation of the sums in Eqs.~B2! we obtain

QL~1,1!5
1

2
bM

2 ~1!Fsinh@2MfM~1!#

2 sinhfM~1!
2M coshfM~1!G ,

~B4!

QL
(s)~1,k![

1

2
@QL~1,k!1QL~k,1!#

52
1

2
~j1h!uM~1,1!uM~1,k!, ~B5!
t

QL
(a)~1,k![

1

2
@QL~1,k!2QL~k,1!#

5
bM~1!bM~k!sinhfM~1!sinfM~k!

2@coshfM~1!2cosfM~k!#

2
R̃M~1;j!RM~k;h!1R̃M~1;h!RM~k;j!

4~12jh!

3
uM~1,1!uM~1,k!

@coshfM~1!2cosfM~k!#
, ~B6!

where

R̃M~1;j!5122j coshfM~1!1j2. ~B7!

With the aid of the limits~3.8! and

lim
M→`

fM~1!5 ln j, lim
M→`

QL~1,1!5
12jh

j2h
~j.h!,

~B8!

we evaluate the contribution of the first term in the righ
hand side of Eq.~B1! for j.h

~j2j21!~12jh!

~j2h!2
l`

L21~1!. ~B9!

By using Eqs.~B5! and~B6! we reorganize the contribution
of the second and third terms in the right-hand side of E
~B1! into symmetric and antisymmetric parts. The straig
forward evaluation of the symmetric part yields in the lim
M→` (j.h)

2
1

2
~j1h!

j2j21

j2h
@l`

i 21~1!ZL2 i
A 1l`

L2 i~1!Zi 21
A #.

~B10!

Turning to the antisymmetric part, we first notice that t
contribution of the first term in the right-hand side of E
~B6! vanishes in the limitM→`. The contribution of the
second term is easily obtained with the aid of the limits

lim
M→`

R̃M~1;j!50,

lim
M→`

R̃M~1;h!5j21~12jh!~j2h! ~j.h!. ~B11!

As a result, the antisymmetric part yields

2
1

2
~j2j21!@l`

i 21~1!ZL2 i
A 2l`

L2 i~1!Zi 21
A #. ~B12!

By collecting the above terms we obtain forj.h

VL
B,C~ i !5

j2j21

j2h F12jh

j2h
l`

L21~1!2jl`
i 21~1!ZL2 i

A

2hl`
L2 i~1!Zi 21

A G1VL
A~ i !. ~B13!
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The result forh.j follows by exchanging places ofj and
h.

In region D we single out the contributions of the eige
vectorsuuM(1)& anduuM(2)& in the general expression~4.5!
for VL( i ). The evaluation of the kernelQL(m,k), see Eq.
~4.3!, is performed by using the explicit form of the eige
vectors in region D. For the part ofVL( i ) which involves
only the eigenvectors with eigenvalueslM(1) and/orlM(2)
we obtain

2lM
L21~1!uM

2 ~1,1!QL~1,1!1lM
L21~2!uM

2 ~1,2!QL~2,2!

1@lM
i 21~1!lM

L2 i~2!

1lM
L2 i~1!lM

i 21~2!#uM~1,1!uM~1,2!QL
(s)~1,2!

1@lM
i 21~1!lM

L2 i~2!

2lM
L2 i~1!lM

i 21~2!#uM~1,1!uM~1,2!QL
(a)~1,2!. ~B14!

Here QL(1,1) is defined by the first equation~B2!, and
QL(2,2) follows from the latter by replacingfM(1) with
fM(2); QL

(s)(1,2) andQL
(a)(1,2) are the symmetric and an

tisymmetric~with respect to the labels 1 and 2) parts of

QL~1,2!52 i bM~1!bM~2! (
n51

M21

sinh@~M112n!fM~1!#

3sinh@~M2n!fM~2!#.

The part ofVL( i ) which involves one of the two larges
eigenvalues and the bounded quasicontinuous spectrum
-
(
j 51

2

(
k53

M

@lM
i 21~ j !lM

L2 i~k!

1lM
L2 i~ j !lM

i 21~k!#uM~1,j !uM~1,k!QL
(s)~ j ,k!

1(
j 51

2

(
k53

M

@lM
i 21~ j !lM

L2 i~k!

2lM
L2 i~ j !lM

i 21~k!#uM~1,j !uM~1,k!QL
(a)~ j ,k!.

~B15!

HereQL
(s)(1,k) andQL

(a)(1,k) (k53, . . . ,M ) are defined in
Eqs. ~B5! and ~B6!, respectively;QL

(s)(2,k) and QL
(a)(2,k)

follow under replacement offM(1) by fM(2). Thecontri-
bution of these terms in the limitM→` is readily obtained
by taking into account the limits~3.8!, ~3.9!, ~B11!, and

lim
M→`

R̃M~2;j!5h21~jh21!~j2h!, lim
M→`

R̃M~2;h!50.

~B16!

All the remaining terms inVL( i ) involve only eigenvalues
belonging to the quasicontinuous part of the spectrum of
matrix CM ; they yield in the limitM→` the same analyti-
cal expression~A13! as the one forVL( i ) in region A ~how-
ever, withj andh larger than unity!.

As a result, by taking the limitM→` at j.h.1 we
obtain the exact expression
VL
D~ i ;j,h!52

jh21

~j2h!2@~j2j21!l`
L21~1!1~h2h21!l`

L21~2!#

1
~j2j21!~h2h21!

~j2h!2
@jl`

i 21~1!l`
L2 i~2!1hl`

L2 i~1!l`
i 21~2!#

2
1

j2h
@~j221!l`

i 21~1!2~h221!l`
i 21~2!#ZL2 i

A ~j,h!

2
1

j2h
@h~j2j21!l`

L2 i~1!2j~h2h21!l`
L2 i~2!#Zi 21

A ~j,h!1VL
A~ i ;j,h!. ~B17!

The same result holds also forh.j.1, since the right-hand side of Eq.~B17! is invariant under the transformationj↔h,
which impliesl`(1)↔l`(2).

Note that the singularity atj5h in the right-hand side of Eq.~B17! can be removed with the aid of the equality

l`~1!2l`~2!5
d

p

~j2h!~jh21!

jh
.

Thus, by taking into account Eq.~3.14! for ZL
D(j,h), we can rewrite Eq.~B17! in the equivalent form

VL
D~ i ;j,h!52hZi 21

D ~j,h!ZL2 i
D ~j,h!1S j211h2

j2j21

jh Dl`
L21~1!1

d

p

~h221!~jh21!

jh

3F (
n50

L22

l`
L2n22~1!l`

n ~2!2
j221

jh (
n50

L2 i 21

l`
L2n22~1!l`

n ~2!G
2~j2j21!l`

i 21~1!ZL2 i
A ~j,h!1~h2h21!l`

L2 i~2!Zi 21
A ~j,h!
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1VL
A~ i ;j,h!1hZi 21

A ~j,h!ZL2 i
A ~j,h!. ~B18!

The above expression is convenient for the study of the coexistence linej5h.1: by settingh5j we obtain

VL
D~ i ;j,j!52jZi 21

D ~j,j!ZL2 i
D ~j,j!1~j1j23!l`

L21~1!2~j2j21!2
d

p
l`

L22~1!1~12j22!2@L1~j221!i #
d

p
l`

L22~1!

1~j2j21!@l`
L2 i~1!Zi 21

A ~j,j!2l`
i 21~1!ZL2 i

A ~j,j!#1VL
A~ i ;j,j!1jZi 21

A ~j,j!ZL2 i
A ~j,j!. ~B19!

This completes our derivation of exact representations forVL( i ) in the four regions of the phase diagram characterized
different spectral properties of the truncated lattice propagatorCM .
ys
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